Morphological and immunocytochemical characteristics indicate the yield of early progenitors and represent a quality control for human mesenchymal stem cell culturing.
نویسندگان
چکیده
Human mesenchymal stem cells (hMSC) are a heterogeneous cell population, which is reflected in varying morphological and biological properties. Three subpopulations with intrinsic characteristics can be distinguished: small rapidly self-renewing cells, spindle-shaped cells and large, flattened cells. Unfortunately, it has neither been possible to morphologically define these distinct cells consistently, nor to relate them to specific surface marker features. Here, the primary hMSC subpopulations of three donors are clearly defined by maximum cell diameter and area. Furthermore, these cells were stained for the putative hMSC surface markers CD105, CD90 as well as CD73, and evaluated by three-colour flow cytometry and simultaneous multicolour immunocytochemistry. Interestingly, cell cultures with a high rate of triple-positive hMSC featured a higher content of rapidly self-renewing cells. On the other hand, a higher fraction of flattened cells correlated with a loss of one or more hMSC surface markers. The expression of CD73 showed the highest heterogeneity. Immunocytochemistry further confirmed that flattened cells mainly lack CD73 expression, whereas rapidly self-renewing cells were steadily positive for all three hMSC markers. In the literature, hMSC properties are especially conceded to rapidly self-renewing cells, whereas flattened cells have been suggested to represent early stages of lineage-specific progenitors. We reveal that among the recently suggested surface markers, CD73 is the most sensitive, as it seems to be down-regulated in the early stages of differentiation. Our morphological and immunocytochemical characterization of hMSC subpopulations indicates the yield of early multipotent hMSC and thereby provides a quality control approach for hMSC culturing.
منابع مشابه
Multilineage Differentiation Activity by the Human Umbilical Vein-Derived Mesenchymal Stem Cells
Background: Mesenchymal stem cells (MSC) are a very promising transplantable stem cell source for a variety of cell replacement therapies. As the main source of MSC is bone marrow (BM), most of studies have been done on BM-derived MSC (BM-MSC). Umbilical cord (UC)-derived MSC (UC-MSC) which are recently introduced, is one of the good alternative source for these cells. The objective of this stu...
متن کاملIsolation and Characterization of Human Induced Pluripotent Stem Cells-Derived Mesenchymal Progenitors
Purpose: Isolating human induced pluripotent stem cells (hiPS)-derived mesenchymal progenitors as a new source of mesenchymal cells which can differentiate into different lineages like adipose and bone. Materials and Methods: After 7 days of hiPS1 culture on matrigle coated dishes, spindle like cells around colonies were removed by cell scraper. These cells that had mesenchymal like morphology ...
متن کاملP 82: The Transplantation of Human Umbilical Cord Mesenchymal Stem Cells in Neonatal Strokes
Brain injuries that caused by strokes (result of intra partum ischemia) are a frequent cause of prenatal mortality and morbidity with limited therapeutic options. Transplanting human mesenchymal stem cells (hmscs) indicates improvement in hypoxic Ischemic brain injury (HIBD) by secretion growth factor stimulating repair processes (Hmscs) known as multi potent cells which isolated from bone marr...
متن کاملThe Proliferation Study of hiPS Cell-Derived Neuronal Progenitors on Poly-Caprolactone Scaffold
Introduction: The native inability of nervous system to regenerate, encourage researchers to consider neural tissue engineering as a potential treatment for spinal cord injuries. Considering the suitable characteristics of induced pluripotent stem cells (iPSCs) for tissue regeneration applications, in this study we investigated the adhesion, viability and proliferation of neural progenitors (de...
متن کاملHarvesting of bone marrow mesenchymal stem cells from live rats and the in vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells
In the bone marrow, there are certain populations of stem cell sources with the capacity to differentiate into several different types of cells. Ideally, cell transplants would be readily obtainable, easy to expand and bank, and capable of surviving for sufficient periods of time. Bone marrow mesenchymal stem cells (BM-MSCs) possess all of these characteristics. One of the most important benefi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of anatomy
دوره 214 5 شماره
صفحات -
تاریخ انتشار 2009